A Monte Carlo factoring algorithm with linear storage
نویسندگان
چکیده
منابع مشابه
A Noisy Monte Carlo Algorithm
We propose a Monte Carlo algorithm to promote Kennedy and Kuti’s linear accept/reject algorithm which accommodates unbiased stochastic estimates of the probability to an exact one. This is achieved by adopting the Metropolis accept/reject steps for both the dynamical and noise configurations. We test it on the five state model and obtain desirable results even for the case with large noise. We ...
متن کاملA Stochastic Monte Carlo Algorithm
We propose a Monte Carlo algorithm to promote Kennedy and Kuti’s linear accept/reject algorithm which accommodates unbiased stochastic estimates of the probability to an exact one. The probability upper bound violations are avoided by adopting the Metropolis accept/reject steps for both the dynamical and noise configurations and the lower bound violations can be absorbed into the observables. W...
متن کاملMonte Carlo Dose Algorithm
Conventional dose calculation algorithms, such as Pencil Beam are proven effective for tumors located in homogeneous regions with similar tissue consistency such as the brain. However, these algorithms tend to overestimate the dose distribution in extracranial regions such as in the lung and head and neck regions where large inhomogeneities exist. Due to the inconsistencies seen in current calc...
متن کاملFactoring Exogenous State for Model-Free Monte Carlo
Policy analysts wish to visualize a range of policies for large simulator-defined Markov Decision Processes (MDPs). One visualization approach is to invoke the simulator to generate on-policy trajectories and then visualize those trajectories. When the simulator is expensive, this is not practical, and some method is required for generating trajectories for new policies without invoking the sim...
متن کاملA Monte Carlo EM algorithm for generalized linear mixed models with flexible random effects distribution.
A popular way to represent clustered binary, count, or other data is via the generalized linear mixed model framework, which accommodates correlation through incorporation of random effects. A standard assumption is that the random effects follow a parametric family such as the normal distribution; however, this may be unrealistic or too restrictive to represent the data. We relax this assumpti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1984
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1984-0744939-5